Alessio Quercia
Alessio Quercia
Home
Experience
Publications
Talks
Awards
Contact
Light
Dark
Automatic
Uncertainty Quantification
Parameter-efficient Bayesian Neural Networks for Uncertainty-aware Depth Estimation
In this work, we investigate the suitability of PEFT methods for subspace Bayesian inference in large-scale Transformer-based vision models.
Richard D. Paul
*
,
Alessio Quercia
*
,
Vincent Fortuin
,
Katharina Nöh
,
Hanno Scharr
PDF
Cite
Cite
×